Abstract
Effects of some thermo-physical parameters on free convective heat and mass transfer over a vertical stretching surface at lowest level of heat energy in the presence of suction is investigated. The viscosity of the fluid is assumed to vary as a linear function of temperature and thermal conductivity is assumed constant. A similarity transformation is applied to reduce the governing equations into a coupled ordinary differential equations corresponding to the momentum, energy and concentration equations. These equations along with the boundary conditions were also solved numerically using shooting method along with Runge-Kutta Gill method. The effects of thermo-physical parameters on the velocity, temperature and concentration profiles are shown graphically. It is found that with an increase in the value of temperature-dependent fluid viscosity parameter, the velocity increases while the temperature and concentration decreases across the flow region. Dufour, Soret, Frank-Kamenetskii, Prandtl and Schmidt number activation energy also have effect. Numerical data for the local skin-friction coefficient, the local Nusselt number and the local Sherwood number have been tabulated for various values of certain parameter conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.