Abstract

The present experiments were devoted to analyzing the hypothesis that somatostatin (SS) could modulate glomerular filtration rate by interacting with mesangial cells. Studies were performed in cultured human mesangial cells, passages 3-5. Radioligand experiments demonstrated the presence in the cells of two kinds of receptors, with high (dissociation constant 14 pM. Number of sites: 426 fmol/mg) and low (dissociation constant 56 pM. Number of sites: 20, 111 fmol/mg) affinity. SS prevented in a dose-dependent manner the reduction in planar cell surface area induced by 100 nM Angiotensin II (AII). This effect was not inhibited by the blockade of the vasorelaxing prostaglandins (indomethacin, 10 microM), nitric oxide (L-N-methyl-arginine, 0.2 mM), adenylate cyclase (2,5'-dideoxyadenosine, 0.1 mM), or guanylate cyclase (Methylene blue, 30 microM; LY-83583, 10 microM), but it was potentiated by zaprinast, an inhibitor of the cyclic GMP (cGMP)-specific phosphodiesterase. SS also blocked the increase in myosin light chain phosphorylation induced by AII. SS increased cGMP synthesis by cultured human mesangial cells, an effect that seemed to be dependent on the stimulation of a particulate guanylate cyclase. Preincubation of the cells with pertussis toxin (0.5 microgram/ml) inhibited the effect of SS on the AII-dependent changes in planar cell surface area, as well as the SS-dependent cGMP stimulation. In summary, these results demonstrate the ability of SS to relax cultured human mesangial cells, thus supporting a role for this peptide in the regulation of the glomerular filtration rate. The SS-dependent mesangial cell relaxation may be due to changes in the intracellular concentrations of cGMP, as a consequence of the activation of a particulate guanylate cyclase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call