Abstract

We investigated the effects of solvents, such as ethanol and isooctane, on self-assembly of the mercaptoundecanoic acid (MUA) monolayer on Si and its diffusion barrier properties for Cu metallization. The use of isooctane as a solvent produced MUA self-assembled monolayers (SAMs) (~1.3 nm thick) on Si. These acted as an effective diffusion barrier against Cu diffusion up to 200°C. In contrast, the MUA SAMs produced by ethanol allowed the diffusion of Cu to a MUA-Si interface at 200°C, stimulating the out-diffusion of Si into Cu and thus resulting in the degraded diffusion barrier properties. This was possibly due to the partial formation of interplane hydrogen bonding between the terminal groups of the bound acid and free thiol groups. This provided less dense thiol surface groups, thus leading to poor adhesion of Cu to MUA SAMs. The fabricated Cu/isooctane-assisted MUA source/drain electrode a-Si:H thin film transistors with a channel length of 10 µm exhibited an excellent electron mobility of 0.74 cm /V-s, threshold voltage of −0.51 V, I /I ratio of 3.25 × 10 , specific contact resistance of 4.24 Ω-cm after annealing at 200°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.