Abstract
In this study, hydrophobic silica aerogels were synthesized from rice husk ash-derived sodium silicate through sol-gel processing, solvent exchange, surface modification and ambient pressure drying. By volume, 10% of trimethylchlorosilane (TMCS) in 90% of n-hexane was used as a hydrophobic solution in the surface modification process. The physical and chemical properties of silica aerogels were characterized by density and porosity measurements, scanning electron microscopy (SEM), Fourier transforms infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller theory (BET) and dynamic scanning calorimetry (DSC). The hydrogels prepared were in the form of 2.5 ± 0.5 mm beads and then converted into alcogels through solvent exchange with ethanol for repetition of 3, 6 and 9 days. It is found that the optimal quality of silica aerogels with the BET surface area as high as 668.82 m2/g was obtained from the alcogels of the solvent exchange period of 9 days. Depending on the size of the gel’s block, a longer solvent exchange period will ensure adequate removal of pore water. Post heat treatment on silica aerogels obtained from the 9 days of solvent exchange at 200, 300 and 400 °C for 2 h results in slight decreased of aerogel’s density from 0.048 g/cm3 to 0.039 g/cm3 and the hydrophobicity of the aerogels is decreased above 380 °C as confirmed by DSC analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.