Abstract

ABSTRACTAnti-TNF antibodies are major therapeutics for rheumatoid arthritis and have been approved for marketing in many countries. Antibody-dependent cellular cytotoxicity (ADCC) is considered to be a potential mechanism of action of anti-TNF antibodies, since some anti-TNF antibodies have been confirmed to induce cytotoxic effects on TNF-producing cells via ADCC and complement-dependent cytotoxicity (CDC) in in vitro experiments. In this study, we established a new stable effector cell line expressing human FcγRIIIa, CD16:KHYG-1, and compared the performance of this cell line with that of peripheral blood mononuclear cells (PBMCs) in ADCC assays against CHO-derived target cells expressing protease-sensitive pro-TNF. Although an inhibitory effect of soluble TNF released from pro-TNF expressing cells on ADCC activity was seen, clear dose-responsive ADCC activities were observed even in the presence or absence of TNF-α converting enzyme (TACE) inhibitor. However, significant differences in the ADCC activities in the presence or absence of TACE inhibitor were only noted when CD16:KHYG-1 cells were used as the effector cells. Our findings indicate that soluble TNF may influence ADCC activity of anti-TNF antibody. Moreover, the fact that the influence was able to be detected only in the case using stable effector cell also suggests that the stable effector cell established this time enable highly accurate ADCC measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.