Abstract

In order to refine microstructure and improve mechanical properties, size of lamellar colonies and reinforced phase, distribution of elements, and microhardness with different solidification rates were studied by rapid solidification. Results show that microstructure morphology changes from equiaxed grain to granulated dendrites after rapid solidification. When speed of revolution increases, size of lamellar colonies decreases from 53.5 to 16.9 μm and length of TiB particles decreases from 60.1 to 20.4 μm. The B2 phase exists in lamellar colonies and at the boundary of lamellar colonies before rapid solidification and forms in lamellar colonies after rapid solidification. An increase in solidification rate increases degree of supercooling to increase number of nucleation particles which form before solidification front. The β phase incompletely transforms to the α phase and is retained in α phase after rapid solidification. The microstructure does not have enough time to transform completely and high‐temperature microstructure is retained at a higher cooling rate. Test results show that microhardness increases from 453 to 562 HV when speed of revolution increases from 0 to 800 rpm. Improvement of microhardness results from solution strengthening of Nb, Cr, and V, grain refinement strengthening and reduction of the reinforced phase of TiB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.