Abstract

Aluminum is an attractive anode material for electrochemical energy storage and conversion devices, but the passive film and parasitic corrosion of aluminum anode in aqueous solution limits its development. Herein, we investigated the electrochemical performance of Al-2Mg alloy in alkaline electrolyte containing stannate ion via hydrogen evolution tests, electrochemical measurements and surface analysis. It is found that the solid-solute magnesium in aluminum matrix activates the oxide film and decreases the cathodic sites, which negatively shift the aluminum anode potential. Furthermore, the doping magnesium ion in the oxide film facilitates the tin deposition reaction on the surface of aluminum anode, and the uniformly deposited tin inhibits the parasitic corrosion reaction. As a result, Al-2Mg alloy in 6 M NaOH solution with 0.05 M Na2SnO3 exhibits low hydrogen evolution rate of 0.015 mL·cm−2·min−1 with the inhibition efficiency of 95% at open circuit and negative electrode potential of −1.81 V vs. saturated calomel electrode at 20 mA cm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.