Abstract

Disinfection byproducts (DBPs) have been extensively investigated during the chlorination of water and wastewater. Although over 700 DBPs have been identified, more than 50% of the total organic halogen remains unknown. Solid phase extraction (SPE) has been emerged as a popular pretreatment approach for enrichment and desalting of unknown DBPs prior to the mass spectrometry analysis. However, the effects of SPE conditions on unknown DBPs in real wastewater have not yet been reported. Herein, three factors (acid types, pH values, and sorbent types) influencing the composition of DBPs in chlorinated municipal wastewater were systematically investigated by Fourier transform ion cyclotron resonance mass spectrometry and statistical analysis. The results indicated that the number of DBPs in different SPE conditions ranged from 280 to 706, and the majority ones were Br-DBPs and CHOX compounds. Compared with H2SO4, more common DBPs were found when using HCl and HCOOH to adjust the pH values of samples. The unique DBPs extracted at pH 1.0 and 2.0 generally owned higher modified aromaticity index (AImod) value and C number than at pH 3.0. The effect of acid types on the extracted DBPs was pH dependent, and the total number of extracted DBPs increased with the increasing of pH value. In terms of sorbent types, the unique DBPs in C18 sorbent possessed low O/C ratios (O/C < 0.6), whereas the unique ones in HLB sorbent owned high O/C ratios (O/C > 0.6). Compared with C18 and HLB sorbents, the unique DBPs extracted in PPL sorbent were characterized by relatively high AImod and DBE values. Based on mass difference analysis, 1496 precursors-DBPs pairs were identified in all extracted samples, with the highest number of bromine substitution reaction. Overall, the effects of SPE conditions on the composition of unknown DBPs should not be overlooked, and the amount and diversity of DBPs may be underestimated under a single SPE condition. This study provides new methodological references for the accurate identification of unknown DBPs with different characteristics in real wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.