Abstract

An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183°C) < T < 643.15 K (370°C). Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry.

Highlights

  • The rapid development in microelectronic technologies presents additional challenges to ensure the reliability and quality of electronic assemblies

  • The bottom region of the pin was immersed in the molten solder as the printed circuit board (PCB) was passed through

  • The PCB passed through the soldering zone as the capillary flow filled the PCB hole

Read more

Summary

Introduction

The rapid development in microelectronic technologies presents additional challenges to ensure the reliability and quality of electronic assemblies. In the PCB assembly industry, wave soldering is an established metallurgical joining method using a molten solder to attach pin through-hole (PTH) components (e.g., resistor, transistor, and capacitor) to the PCB. This process enables the molten solder to fill the gap between the PTH and the board to create a mechanical joint (solder joint). Improper control of molten solder temperature leads to solder joint fractures when mounting onto the PCB. This situation subjects the package to thermomechanical stress that exceeds the fracture strength of the solder joint. The density and the viscosity of the molten solder significantly influence the reliability of the wave soldering [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call