Abstract

Photoinhibition and recovery kinetics after short exposure to solar radiation following three different irradiance treatments of irradiances (PAR, PAR+UVA and PAR+UVA+UVB) was assessed in two intertidal species of the genus Gelidium, Gelidium sesquipedale and G. latifolium, collected from Tarifa (southern Spain) using in vivo chlorophyll fluorescence (PAM fluorometry). After 3 h UV radiation exposure, optimal quantum efficiency (Fv/Fm) in G. sesquipedale decreased between 25 and 35% relative to the control. Under PAR alone, values decreased to 60%. In G. latifolium, photoinhibition did not exceed 40%. Similar results were found for the effective quantum yield (ΔF/Fm′), however, no marked differences in relation to light treatments were seen. When plants were shaded for recovery from stress, only in G. latifolium a significant increase in photosynthesis was observed (between 80 and 100% of control). In contrast, photosynthesis of G. sesquipedale suffered a chronic photoinhibition or photodamage under the three light irradiances. Full solar radiation (PAR+UVA+UVB) affected also the electron transport rate in both species. Here, initial slopes of electron transport vs. irradiance curves decreased up to 60% of controls. Although the recovery kinetic under PAR+UVA+UVB conditions was delayed in G. latifolium, after 24 h recovery this species reached significantly higher than G. sesquipedale. PAR impaired electron trasport only in G. sesquipedale. Overall, both species are characterized by different capacity to tolerate enhanced solar radiation. G. latifolium is a sun adapted plant, well suited to intertidal light conditions, whereas G. sesquipedale, growing at shaded sites in the intertidal zone, is more vulnerable to enhanced UV radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.