Abstract
This paper presents analytical and empirical data documenting the effects of solar radio emissions on outdoor propagation path loss at 60 GHz bands. Both line-of-sight (LOS) and non-LOS scenarios were considered. The setup used in the empirical studies emulates the future fifth-generation cellular systems for both access and backhaul services, as well as for device-to-device communications. Based on the measurement data collected in sunny weather with intense solar activities, we developed large-scale propagation path loss models at 60 GHz, and observed the effects of solar radio emissions on the path loss data. It is shown that solar radio emission can decrease carrier-to-noise ratio, and that this translates into a corresponding increase in the path loss exponent (PLE) values for the large-scale propagation path loss channel models. Empirical data show that 9.0%-15.6% higher PLE values were observed in hot and sunny weather during the day (41°-42 °C) compared with the counterpart measurements taken at night in cool and clear weather (20°-38 °C). This translates into a corresponding decrease in 60 GHz radio coverage in hot and sunny weather during the day. The empirical data are closely corroborated by analytical estimates presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.