Abstract

This work is focused on the aerodynamic analysis of a small satellite provided with a deployable aero-brake. The satellite is intended to perform a completely aerodynamic de-orbiting maneuver from Low-Earth-Orbit. A brief discussion about the aerodynamic effects of the position of the aero-brake along the longitudinal axis of a simplified axisymmetric system is presented. Moreover, a more complex architecture, envisaging deployable solar panels for the enhancement of power generation along the orbital path, is proposed and analyzed. The present paper is aimed at the evaluation of the influence of such a configuration on the satellite aerodynamic parameters. Computations have been carried out by means of a Direct Simulation Monte Carlo (DSMC) code at altitude of 150 km, velocity of 7800 m/s and in the interval of angle of attack 0–180 deg with a spacing of 10 deg. The results verified that the deployable solar panels strongly influence Aerodynamics of the satellite. One of the most relevant aspects is the variation of the longitudinal stability equilibrium that becomes more stable. Furthermore, the deployable solar panels increase the aerodynamic drag when the aero-brake is closed, affecting the drag modulation capability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call