Abstract

AbstractPartial shading is widely considered to be a limiting factor in the performance of photovoltaic (PV) systems applied in urban environments. Modern system architectures combined with per module deployment of power electronics have been used to improve performance especially at heterogeneous irradiance conditions. In this work another approach is used to combine modern system architecture with alternate module designs. The granularity of cell groups in PV modules is investigated together with the so‐called Tessera concept, in which single cells are cut in 16 parts. Typical meteorological year yield calculations show that these alternate module designs in combination with modern system architectures can retrieve up to half the shading losses compared to standard modules and string inverters under identical shading conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call