Abstract

This paper focuses on investigating the effects of soil-structure interaction (SSI), higher modes, and damping on the response of a mid-story-isolated structure founded on multiple soil layers overlying bedrock. Closed-form solutions were obtained for the entire system, which consists of a shear beam type superstructure, seismic isolator, and multiple soil layers overlying bedrock, while subjected to ground motion. The proposed formulations simplify the problem in terms of well-known frequency and mechanical impedance ratios that can take into account the effects of SSI, higher modes, and damping in the entire system, and be capable of explicitly interpreting the major dynamic behavior of a mid-story-isolated structure interacting with the multiple soil layers overlying bed rock. The SSI effects on the dynamic response of a mid-story-isolated structure as a result of multiple soil layers overlying bedrock were extensively investigated through a series of parametric studies and physically explained by virtue of derived formulations. In addition, the results of numerical exercises show that higher damping provided by the isolator may provoke higher mode response of the superstructure; that the lower structure below the isolator may have significantly larger deformations compared to those of the upper structure above the isolator; and that isolator displacements may be amplified by the SSI effects while compared to those of mid-story-isolated structures with fixed-base.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call