Abstract

Soil erosion poses a major threat to the sustainability of natural ecosystems. The main objective of this study was to investigate the effects of soil type and rainfall intensity on sheet erosion processes (hydrological, erosional processes and sediment characteristics) from temperate to tropical climate. Field plot experiments were conducted under pre-wetted bare fallow condition for five soil types (two Luvisols, an Alisol, an Acrisol and a Ferralsol) with heavy textures (silty clay loam, silty clay and clay) derived separately from loess deposits, quaternary red clays and basalt in central-south China. Rainfall simulations were performed at two rainfall intensities (45 and 90mmh−1) and lasted one hour after runoff generation. Runoff coefficient, sediment concentration, sediment yield rate and sediment effective size distribution were determined at 3-min intervals. Runoff temporal variations were similar at the high rainfall intensity, but exhibited a remarkable difference at the low rainfall intensity among soil types except for tropical Ferralsol. Illite was positively correlated with runoff coefficient (p<0.05). Rainfall intensity significantly contributed to the erosional process (p<0.001). Sediment concentration and yield rate were the smallest for the tropical Ferralsol and sediment concentration was the largest for the temperate Luvisol. The regimes (transport and detachment) limiting erosion varied under the interaction of rainfall characteristics (intensity and duration) and soil types, with amorphous iron oxides and bulk density jointly enhancing soil resistance to erosive forces (Adj-R2>88%, p<0.001). Sediment size was dominated by <0.1mm size fraction for the Luvisols and bimodally distributed with the peaks at <0.1mm and 1–0.5mm size for the other soil types. Exchangeable sodium decreased sediment size while rainfall intensity and clay content increased it (Adj-R2=96%, p<0.01). These results allow to better understand the climate effect on erosion processes at the spatial-temporal scale from the perspective of soil properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call