Abstract

Sour orange (Citrus aurantium L.) grown in low-P (9–12 ppm) and high-P (420 ppm) soil inoculated with or without Glomus intraradices (G.i.), were evaluated for biomass, carbohydrates, ribulose bisphosphate carboxylase (RuBPCase), phosphoenolpyruvate carboxylase (PEPCase) activity, leaf 14CO2 incorporation, and other physiological parameters. Growth of plants in the low-P, noninoculated soil was lowest, with total dry biomass reduced up to half of the low-P, inoculum treatment. Total nonstructural carbohydrates were 40% lower in leaves of plants in the low-P, noninoculated soil, compared with the other treatments. Inoculation of the low-P soil enhanced leaf 14CO2 incorporation by 67%, total chlorophyll content by 28%, and RuBPCase activity by 42%, compared with low-P, noninoculated treatment. Improved P-use efficiency by G.i. in low-P soil was comparable to high-P nutrition in improving leaf 14CO2 incorporation and concentration of major leaf photosynthetic products that include starch and sucrose. Leaf PEPCase activity in the low-P, noninoculated treatment, however, was at least threefold higher than the other treatments, suggesting a possible alteration in organic acid metabolism in sour orange leaves as a result of P deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call