Abstract

Soil iron oxides are poorly soluble; however, their dissolution may favor not only an increase in the amount of available iron but also the release of anions and cations, adsorbed or occluded on Fe III oxides, which may have a great impact on environmental quality. In this study, the reductive biodissolution of iron oxides by microorganisms was evaluated using different soil humic fractions as electron donors. A mixed population of microorganisms extracted from an anaerobic mud was incubated for 15 days under anaerobic conditions in the presence of ferrihydrite or goethite, after adding, as electron donors, dissolved organic matter (DOM), fulvic acids (FA), humic acids (HA) or, for comparison, acetate. At regular time intervals Eh, pH, dissolved Fe II and the concentration of dissolved organic compounds that remained in solution were measured. The redox potential (Eh) decreased rapidly in the first days of incubation, more with ferrihydrite than with goethite, and then returned to the initial values with some differences in specific values, depending on the organic fraction. The amounts of Fell released from ferrihydrite reached a maximum of 11.0 μg Fe mL -1 after 15 days of waterlogging compared with 7.5 μg Fe mL -1 released from goethite. Ferrihydrite released more Fe II because of its higher specific surface area and its low crystallinity. DOM and FA fractions were the most effective in Fe reduction and as a C source for bacteria, suggesting that microorganisms can also use DOM for N supply as well as for C, selecting fractions rich in monosaccharides, amino acids, and carboxyl acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.