Abstract
BackgroundWater quality is known to influence the development and survival of larval mosquitoes, which affects mosquito-borne pathogen transmission as a function of the number of mosquitoes that reach adulthood and blood feed. Although water properties are known to affect mosquito development, few studies have investigated the link among soil properties, water quality, and mosquito development. Given the large number of ground-breeding mosquito species, this linkage is a potentially important factor to consider in mosquito ecology. In this study, we explored the effects of different soils on multiple life history parameters of the ground-breeding mosquito species Culex quinquefasciatus (Diptera: Culicidae).MethodsCx. quinquefasciatus larvae were reared in water combined with different soil substrates (sandy, silt, or clay loam textures) at increasing soil to water volume ratios, with and without the addition of organic matter (fish food). Gravid mosquitoes were offered different soil–water extracts to investigate soil effects on oviposition preference.ResultsWithout the addition of organic matter, larval survival and development differed significantly among waters with different soil textures and volumes of substrate. Mosquitoes in water with clay loam soil survived longer and developed further than mosquitoes in other soil waters. Larvae survived for longer periods of time with increased volumes of soil substrate. Adding organic matter reduced the differences in larval survival time, development, and pupation among soil–water extracts. Adult female mosquitoes oviposited more frequently in water with clay loam soil, but the addition of organic matter reduced the soil effects on oviposition preference.ConclusionsThis study suggests soil composition affects larval mosquito survival and development, as well as the oviposition preference of gravid females. Future studies could differentiate abiotic and biotic soil features that affect mosquitoes and incorporate soil variation at the landscape scale into models to predict mosquito population dynamics and mosquito-borne pathogen transmission.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.