Abstract

AbstractGrowing evidence shows that soil microbes affect plant coexistence in a variety of systems. However, since these systems vary in the impacts microbes have on plants and in the ways plants compete with each other, it is challenging to integrate results into a general predictive theory. To this end, we suggest that the concepts of niche and fitness difference from modern coexistence theory should be used to contextualize how soil microbes contribute to plant coexistence. Synthesizing a range of mechanisms under a general plant–soil microbe interaction model, we show that, depending on host specificity, both pathogens and mutualists can affect the niche difference between competing plants. However, we emphasize the need to also consider the effect of soil microbes on plant fitness differences, a role often overlooked when examining their role in plant coexistence. Additionally, since our framework predicts that soil microbes modify the importance of plant–plant competition relative to other factors for determining the outcome of competition, we suggest that experimental work should simultaneously quantify microbial effects and plant competition. Thus, we propose experimental designs that efficiently measure both processes and show how our framework can be applied to identify the underlying drivers of coexistence. Using an empirical case study, we demonstrate that the processes driving coexistence can be counterintuitive, and that our general predictive framework provides a better way to identify the true processes through which soil microbes affect coexistence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call