Abstract
AbstractFreezing and thawing may alter element turnover and solute fluxes in soils by changing physical and biological soil properties. We simulated soil frost in replicated snow removal plots in a mountainous Norway spruce stand in the Fichtelgebirge area, Germany, and investigated N net mineralization, solute concentrations and fluxes of dissolved organic carbon (DOC) and of mineral ions (NH4+, NO3−, Na+, K+, Ca2+, Mg2+). At the snow removal plots the minimum soil temperature was −5 °C at 5 cm depth, while the control plots were covered by snow and experienced no soil frost. The soil frost lasted for about 3 months and penetrated the soil to about 15 cm depth. In the 3 months after thawing, the in situ N net mineralization in the forest floor and upper mineral soil was not affected by soil frost. In late summer, NO3− concentrations increased in forest floor percolates and soil solutions at 20 cm soil depth in the snow removal plots relative to the control. The increase lasted for about 2–4 months at a time of low seepage water fluxes. Soil frost did not affect DOC concentrations and radiocarbon signatures of DOC. No specific frost effect was observed for K+, Ca2+ and Mg2+ in soil solutions, however, the Na+ concentrations in the upper mineral soil increased. In the 12 months following snowmelt, the solute fluxes of N, DOC, and mineral ions were not influenced by the previous soil frost at any depth. Our experiment did not support the hypothesis that moderate soil frost triggers solute losses of N, DOC, and mineral ions from temperate forest soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.