Abstract

Studies were conducted to examine the effects of soil properties on sulfentrazone phytotoxicity and dissipation under laboratory conditions. The pH values of five soils from Saskatchewan were altered through acidification with hydrochloric acid (HCl) and alkalization with calcium carbonate (CaCO3). The phytotoxicity of sulfentrazone to sugar beet (Beta vulgaris L. Beta 1385), determined using a shoot length bioassay, was reduced when soil pH was lowered and was greater when soil pH increased. Concentrations corresponding to 50% inhibition (I50 values) obtained from the dose–response curves were correlated with soil pH, demonstrating the relationship between soil pH and sulfentrazone phytotoxicity. Dissipation of sulfentrazone was examined in soils incubated at 25 °C and moisture content of 85% field capacity. Sulfentrazone dissipation followed a two-compartment model, and sulfentrazone half-lives estimated from the dissipation curves ranged from 21 to 111 days. Half-lives were correlated with soil pH (R = –0.857, p = 0.014) and soil organic carbon content (R = 0.790, p = 0.034) but not with clay content (R = 0.287, p = 0.533). Soil characteristics, particularly soil pH and organic carbon content, affect the bioactivity of sulfentrazone and influence both sulfentrazone efficacy in weed control and its potential for carry-over injury to subsequent crops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.