Abstract
The aging phenomenon, which produces changes in material state over time, is associated with significant modification of mechanical and physical soil properties. This change should be accounted for during geotechnical design. Although soils sometimes improve with aging, the opposite effect is occasionally observed. This paper describes a study performed to investigate the effect of aging on the mechanical behavior and the permeability of a silty soil. Undrained unconsolidated triaxial shear tests and triaxial permeability tests were performed on disturbed and compacted samples. Upon conclusion of these tests, the samples were sealed from air and moisture. The results show an important increase in both the undrained shear strength and the deformation modulus caused by silt rigidification during the aging process. These changes cause an over estimation of laboratory measured shear strength. For instance, the increase in the deformation modulus and undrained cohesion can approach 100 % for an approximate 328 day storage period. Sample permeability was found to decrease with aging. This reduction can be ascribed to several causes including micro-organisms growth, secondary sample consolidation and progressive filling caused by the migration of very fine particles. These phenomena might have negated the expected increase in permeability with aging time reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.