Abstract

The effects of sodium hexametaphosphate (SHMP) addition on the dispersion and hydration of calcium aluminate cement were investigated, and the relevant mechanisms discussed. The content of SHMP and the adsorption capacity of SHMP on the surface of cement particles were estimated using plasma adsorption spectroscopy and the residual concentration method. The rheological behavior of hydrate, ζ-potential value of cement particles, phase transformation and the microstructure of the samples were determined by coaxial cylinder rheometer, zeta probe, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that SHMP readily reacted with Ca2+, forming complexes [Ca2(PO3)6]2− ions which were subsequently adsorbed onto the surfaces of cement particles. When the content of SHMP was 0.05%, the adsorption ratio reached 99%. However, it decreased to 89% upon further increasing the addition of SHMP to 0.4%. The complexes [Ca2(PO3)6]2− adsorbed onto the surfaces of cement particles inhibited the concentration of Ca2+ and changed ζ-potential, resulting in enhanced electrostatic repulsive force between the cement particles and reduced viscosity of cement-water slurry. The experimental results indicate that the complexes [Ca2(PO3)6]2− covering the surfaces of cement particles led to a delayed hydration reaction, i.e., they extended the hydration time of the cement particles, and that the optimal addition of SHMP was found to be about 0.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.