Abstract

Background & AimsNonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Insulin resistance (IR) appears to be critical in its pathogenesis. We evaluated the effects of sodium butyrate (butyrate) and its synthetic derivative N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA) in a rat model of insulin resistance and steatosis induced by high-fat diet (HFD).MethodsAfter weaning, young male Sprague-Dawley rats were divided into 4 groups receiving different diets for 6 weeks: 1. control group (standard diet); 2. HFD; 3. HFD plus butyrate (20 mg/kg/die) and 4. HFD plus FBA (42.5 mg/Kg/die, the equimolecular dose of butyrate). Liver tissues of the rats were analyzed by Western blot and real-time PCR. Insulin resistance, liver inflammation and Toll-like pattern modifications were determined.ResultsEvaluation of these two preparations of butyrate showed a reduction of liver steatosis and inflammation in HFD fed animals. The compounds showed a similar potency in the normalisation of several variables, such as transaminases, homeostasis model assessment for insulin resistance index, and glucose tolerance. Both treatments significantly reduced hepatic TNF-α expression and restored GLUTs and PPARs, either in liver or adipose tissue. Finally, FBA showed a higher potency in reducing pro-inflammatory parameters in the liver, via suppression of Toll-like receptors and NF-κB activation.ConclusionsOur results demonstrated a protective effect of butyrate in limiting molecular events underlying the onset of IR and NAFLD, suggesting a potential clinical relevance for this substance. In particular, its derivative, FBA, could represent an alternative therapeutic option to sodium butyrate, sharing a comparable efficacy, but a better palatability and compliance.

Highlights

  • A close association between non-alcoholic fatty liver disease (NAFLD) and several findings indicative of insulin resistance (IR) and metabolic disorders has long been reported

  • The purpose of this study is to investigate the efficacy of sodium butyrate and of its more palatable derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butiramide (FBA), in a rat model of NAFLD induced by high fat diet

  • Liver sections from rats fed with high-fat diet (HFD) demonstrated significant hepatic damage in comparison with standard diet (STD) fed animals

Read more

Summary

Introduction

A close association between non-alcoholic fatty liver disease (NAFLD) and several findings indicative of insulin resistance (IR) and metabolic disorders has long been reported. The liver produces and is exposed to various types of lipids, such as fatty acids, cholesterol and triglycerides via the portal vein from the diet and visceral adipose tissues. We evaluated the effects of sodium butyrate (butyrate) and its synthetic derivative N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA) in a rat model of insulin resistance and steatosis induced by high-fat diet (HFD). The compounds showed a similar potency in the normalisation of several variables, such as transaminases, homeostasis model assessment for insulin resistance index, and glucose tolerance. Both treatments significantly reduced hepatic TNF-α expression and restored GLUTs and PPARs, either in liver or adipose tissue. Its derivative, FBA, could represent an alternative therapeutic option to sodium butyrate, sharing a comparable efficacy, but a better palatability and compliance

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call