Abstract

Taking into account sodium and potassium ion channel noises, the evolution of the patterns of neuronal networks is investigated. No matter what kind of ion channel noise is working, with coupling coefficient increasing, the spatiotemporal patterns of the neuronal network can be evolved into spiral waves when temperature and noise strength are given, and there is a coupling coefficient threshold for forming a spiral wave. The analysis shows that sodium ion channel noise contributes to the formation of spiral waves in neurons network, while the potassium ion channel noise is not conducive to the formation of spiral waves. In addition, it is found that lower temperature can make the neurons network more sensitive to noise. Finally, the transformation of spiral waves into target waves, in the case of specific parameters is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.