Abstract

The present study was aimed at investigating the effects of different concentrations of sodium alginate (NaAlg) (0.075 and 0.15% (w/v)) on the production of secondary metabolites (SMs) and antioxidant activity of seven safflower genotypes under in vitro salinity stress. The results showed that total phenolic content (TPC), total flavonoids (TFD), total flavonols (TFL), anthocyanin (Ant), total antioxidant capacity (TAC), phenylalanine ammonia-lyase (PAL), catalase (CAT) activity, and lipid peroxidation significantly increased under salinity stress consisting of the concentration of 1.5% (w/v) of NaCl, but callus growth traits decreased. The highest amount of TPC, Ant, and callus growth traits was observed under the elicitation of the sample with the concentration of 0.075(%) NaAlg under salinity stress, but the highest amount for TFD, TFL, CAT, PAL, and TAC was observed under elicitation of the sample with the concentration of 0.15% of NaAlg under salinity stress. This indicated the superiority of NaAlg for elicitation to increase SMs in safflower under salinity stress. Overall, the results showed that genotypes of Mex.22-191 and GE62918 could be processed to produce SMs by eliciting NaCl in safflower as an important medicinal plant at cellular level. A positive and significant correlation between CAT and TPC was observed and indicates that phenolic compounds are the major contributors to the antioxidant potential in safflower. This new elicitor introduced new ways to select and exploit the best NaAlg concentration to develop SMs that are of tremendous importance in terms of commercial purposes along with medical features in safflower at cellular level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call