Abstract

Quasi-static imbibition was simulated using random and correlated stochastic network models. Using the snap-off pore-scale displacement observed by Lernormand et al. (1983) the effects of many parameters on relative permeabilities and residual saturation reported in the literature were reproduced and explained. Increased relative permeabilities and decreased residual non-wetting phase saturation were the results of an increased contact angle (Li and Wardlaw, 1986b; Gauglitz and Radke, 1990; Blunt et al., 1992; Mogensen and Stenby, 1998) a decreased pore–throat aspect ratio, the presence of long-range pore-pore size correlations (Iaonnidis and Chatzis, 1993; Blunt, 1997a), or local pore–throat correlations (Jerauld and Salter, 1990; Iaonnidis and Chatzis, 1993). By modifying the level of snap-off, or its spatial distribution, these parameters varied the efficiency of the displacement patterns and ultimately affect relative permeabilities and residual saturations. Mani and Mohanty (1999) performed simulations on networks with infinite-ranged fractional Brownian motion (fBm) correlations and reported trends of relative permeabilities and residual saturations that were opposite to others’ results (Ioannidis and Chatzis, 1993; Blunt, 1997a). Applying a cut-off length to the fBm correlations reversed Mani and Mohanty’s trends to conform with the common observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call