Abstract

This study examines the effects of doping ZnO nanowires (NWs) with Sn on the growth morphology and electrical properties. ZnO NWs with various Sn contents (1–3 at.%) were synthesized using the vapor–liquid–solid method. Scanning electron and transmission electron microscopy analyses showed that all of the Sn-doped NWs grew in a bamboo-like morphology, in which stacking faults enriched with Sn were periodically inserted. We fabricated a hybrid film of InZnO sol–gel and Sn-doped ZnO NW networks to characterize the effects of Sn doping on the electrical properties of the NWs. With increasing doping density, the carrier concentration increases significantly while the mobility decreases greatly. The resistivity remains scattered, which suggests that Sn doping in ZnO is not an effective method for the enhancement of conductivity, since Sn does not readily incorporate into the ZnO structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.