Abstract

ABSTRACT Several experiments were conducted to understand better the physiological mechanisms underlying growth inhibition of the dinoflagellate Gonyaulax polyedra Stein due to small‐scale turbulence shear. To measure photosynthetic 14C uptake, a “phytoplankton wheel” device for rotating cultures in closed bottles was used. Turbulence was quantified biologically in the bottles by comparing growth inhibition with that in cultures with constant shear between a fixed cylinder and an outer concentric rotating cylinder (a stable Couette flow). At saturating irradiances, particulate photosynthesis (Psat) or photosynthesis per unit chlorophyll (PBsat) were not inhibited completely at the highest turbulence level (26.6 rad.s−1), and photosynthesis was less sensitive than growth. Photosynthesis per cell (PCsat) was increased by turbulence. In three experiments on the effects of turbulence on photosynthesis versus irradiance curves, the slope of the curve, α, for particulate photosynthesis at limiting irradiances did not change. Photosynthesis per unit chlorophyll per unit irradiance (αB) decreased at high (but not intermediate) turbulence levels. Photosynthesis per cell per unit irradiance, αC, increased with turbulence, suggesting an increase in photosynthetic efficiency in turbulent cultures. In two of the three experiments, respiration rates increased with turbulence, and in one experiment excretion of photosynthetically fixed 14C was not affected by motion. Ratios of accessory pigments to chlorophyll a did not change with turbulence, but pigments per cell and per dry weight increased with turbulence. These findings suggest little or no disruption of the photosynthetic apparatus. When turbulence was applied for 1 week, β‐carotene increased while peridinin and diadinoxanthin decreased, suggesting inhibition of synthesis of these latter pigments by prolonged turbulence. Since cell numbers did not increase or decreased during turbulent 72–h incubations, cell division was inhibited and also the cells were very much enlarged. Increases in αC per cell suggest that, in the sea, photo synthetic metabolism can persist efficiently without cell division during turbulent episodes. After turbulence ceases or reaches low levels again, cells can then divide and blooms may form. Thus, blooms can come or go fairly rapidly in the ocean depending on the degree of wave‐ and wind‐induced turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.