Abstract

The flow through a 2D experimental diffuser with channel width 2.60 cm and divergence angle (2 theta) 9 or 20 deg is investigated experimentally for inlet Reynolds number 78,300 and velocity 43.9 m/s, with and without vertical rods to generate inlet turbulence in excess of the limits defined by Hoffmann (1981) and Hoffmann and Gonzales (1983). Measurements are obtained using a thermal wall-flow-direction probe and a single hot-wire velocity probe, and the results are presented graphically. Significant increases in the pressure-recovery coefficient of the diffuser (10 percent at 9 deg and 22 percent at 20 deg) are attributed to the action of turbulence to reduce distortion and delay separation, thus creating an altered flow condition with symmetrical velocity profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.