Abstract

BackgroundNon-syndrome cleft lip with or without cleft palate (NSCL/P) is the most common congenital defect with a complex etiology involving both genetic and environmental factors. Our previous research has identified susceptibility genes of NSCL/P using whole-exome sequencing. The study was to determine the effects of small interfering RNA (siRNA)-mediated silencing of genes on cell proliferation and migration to confirm the roles of the genes in NSCL/P. MethodsWe silenced the genes by RNA interference (RNAi) with siRNA in human oral keratinocyte (HOK). We used the Cell Counting Kit-8 (CCK8) assay to determine cell proliferation and the wound healing assay to determine cell migration. ResultsMigration of HOK was inhibited by RNAi-induced silencing of adenosine triphosphate binding cassette transporter A4 (ABCA4), erythropoietin produces hepatocyte A receptor 3 (EPHA3), alpha-parvin (PARVA), and platelet-derived growth factor C (PDGFC). The change of proliferation was not found. Treated with siRNA-mediated silencing of type IV collagen (COL4A2), eukaryotic translation initiation factor 2B subunit (EIF2B3), fibroblast growth factor receptor 2 (FGFR2), kinesin family member 20B (KIF20B), β-lactamase serine-like protein (LACTB), SEC16 homolog A (SEC16A) and thyroid adenoma target gene (THADA) had no effects on cell proliferation and migration of HOK. ConclusionsWe suggest mutations of the four susceptibility genes ABCA4, EPHA3, PARVA and PDGFC are involved in NSCL/P through inhibiting cell migration. The study provides new candidates for future study of NSCL/P.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call