Abstract

Controlling bacterial growth in fluid milk is of economic interest, and supplemental methods to stop or reduce bacterial growth before and during the cooling chain may be valuable. Silver is effective in controlling growth of single-celled organisms, but has no effect on tissue cells. Smaller diameter (6–8nm) silver nanoparticles were produced, with purity over 99.99% (no chemical reaction used in the process), by using a terminated gas condensation principle. The first trial investigated effects of time, temperature, and accelerating voltages on total aerobic bacteria count in control milk and milk treated with silver nanoparticles. Metal braids were coated with silver nanoparticles using 3 accelerating voltages, 0, 100, and 200V, the results of which indicated that the braids coated using 100V (AgNP100) were optimal. The AgNP100 particles were effective at all treatment temperatures and durations except for 10h, which indicated that the treated milk could be used after 10h for other dairy products such as yogurt, which require microbial activity. The second experiment investigated the effects of silver nanoparticles on counts of yeasts and molds, coliform bacteria, Escherichia coli, and Staphylococcus aureus in cow milk by treating milk with AgNP100 braids at 22°C for 1h. Inductively coupled plasma mass spectrometry analyses indicated that the maximum amount of silver found in the AgNP100-treated milk was 6.1μg/L, which is below the safety limits. Counts in milk samples containing the nanoparticle-coated braids were lower for all yeasts and molds and bacteria investigated compared with the control milk samples, which were kept under the same conditions but without the braids. The differences were significant for coliforms, Escherichia coli, and Staphylococcus aureus but not for yeasts and molds, although ranking of the counts (AgNP100 < initial load < control) were the same for all microorganisms. Small-diameter, silver nanoparticle-coated braids can stop or reduce bacterial growth in fluid milk. Silver nanoparticles inhibited microbial growth and may be useful in complementing the cooling chain and the thermal processes. These results warrant more research on the sensory properties and long-term safety of the use of silver nanoparticles in dairy products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.