Abstract

Human gingival fibroblasts (HGFs) are the main cells that comprise gingival tissue, where they transfer mechanical signals under physiological and pathological conditions. The exact mechanism underlying gingival tissue reconstruction under compressive forces remains unclear. The present study aimed to explore the effects of Smad4, caspase-3 and Bcl-2 on the proliferation of HGFs induced by compressive force. HGFs were cultured on poly(lactide-co-glycolide) (PLGA) scaffolds under an optimal compressive force of 25 g/cm2. Cell viability was determined via Cell Counting Kit-8 assays at 0, 12, 24, 48 and 72 h. The expression levels of Smad4, caspase-3 and Bcl-2 were measured via reverse transcription-quantitative PCR and western blotting. The application of compressive force on HGFs for 24 h resulted in a significant increase in cell proliferation and Bcl-2 expression, but a significant decrease in the expression of Smad4 and caspase-3; however, inverse trends were observed by 72 h. Subsequently, a lentivirus was used to overexpress Smad4 in HGFs, which attenuated the effects of compressive force on HGF proliferation and Bcl-2 expression, but enhanced caspase-3 expression, suggesting that Smad4 may regulate compressive force-induced apoptosis in HGFs. In conclusion, these findings increased understanding regarding the mechanisms of compressive force-induced HGF proliferation and apoptosis, which may provide further insight for improving the efficacy and stability of orthodontic treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.