Abstract

A numerical model is developed to examine the boundary layer flow of an electrically conducting, viscous incompressible micropolar nanofluid (Al2O3/water) over a wedge in the presence of a transverse magnetic field and viscous dissipation with internal heat generation/absorption.
 The combined effect of both cases constant fluid suction and injection is considered, also the velocity slip’s effect is also taken into account. The governing equations have been solved using the Runge-Kutta numerical integration procedure after reducing them to boundary layer equations. Various effects of parameters that govern the flow like velocity, micro-rotation, temperature as well as for local skin friction coefficient, local Nusselt number and local wall couple stress have been illustrated graphically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call