Abstract

In this paper, we study the flow of two immiscible fluids namely, couple stress fluid and Jeffrey fluid in a porous channel. Instead of the classical no-slip conditions on the boundaries, we used slip boundary conditions, which are more realistic and meaningful. In addition, we used inclined magnetic field effects on the fluid flow. The couple stress fluid and Jeffrey fluid are flowing adjacent to each other in the region I and in the region II, respectively, of the horizontal porous channel. The nondimensionalized governing equations are solved analytically by using slip conditions at the lower and upper boundaries and interface conditions at the fluid-fluid interface. The analytical expressions for the velocity components in both regions are obtained in closed form. The effects of slip parameter, Hartmann number, couple stress parameter, Jeffrey parameter, angle of inclination, and Darcy number on velocity components in both regions are investigated. In the absence of slip, couple stress parameter, and Jeffrey parameters, limiting cases are obtained and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.