Abstract
The antifriction ability of powder lubrication and the state of powder layer are strongly related to the service conditions. Therefore, the effects of sliding velocity and normal load under powder lubrication were studied using a face-to-face contact tribometer. In our work, some graphite, a widely used solid lubricant, was introduced into the frictional interface in the state of free powder. Varying friction coefficient and temperature rise were recorded online. The powder layer formed on the frictional surface of the bottom samples was observed by an optical microscope after tests. The comparative research demonstrated the tribological characteristics of powder lubrication are similar to that of polytetrafluoroethylene coating. Besides, the powder lubrication provides longer lubrication life, although the powder was difficult to seal and control during the tests. Within the proper range of sliding velocities and normal loads, the powder layer dynamically formed on the contact surface of the bottom samples, which resulted in the self-replenishing and oil-free lubrication. The powder layer inclined to deteriorate under lower velocity and higher load. The tests with higher velocity exhibited lower friction coefficient and higher temperature rise. The tests with lower load exhibited higher friction coefficient and lower temperature rise. The state of powder layer included typically four stages such as the full layer, the partial detachment, the serious detachment, and the complete destruction. The damage degree of powder layer is not in proportion to the friction coefficient or the temperature rise due to the particularity of powder lubrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.