Abstract

BackgroundSleep deprivation is extremely common in contemporary society, and is considered to be a frequent cause of behavioral disorders, mood, alertness, and cognitive performance. Although the impacts of sleep deprivation have been studied extensively in various experimental paradigms, very few studies have addressed the impact of sleep deprivation on central auditory processing (CAP). Therefore, we examined the impact of sleep deprivation on CAP, for which there is sparse information. In the present study, thirty healthy adult volunteers (17 females and 13 males, aged 30.75 ± 7.14 years) were subjected to a pure tone audiometry test, a speech recognition threshold test, a speech recognition task, the Staggered Spondaic Word Test (SSWT), and the Random Gap Detection Test (RGDT). Baseline (BSL) performance was compared to performance after 24 hours of being sleep deprived (24hSD) using the Student’s t test.ResultsMean RGDT score was elevated in the 24hSD condition (8.0 ± 2.9 ms) relative to the BSL condition for the whole cohort (6.4 ± 2.8 ms; p = 0.0005), for males (p = 0.0066), and for females (p = 0.0208). Sleep deprivation reduced SSWT scores for the whole cohort in both ears [(right: BSL, 98.4 % ± 1.8 % vs. SD, 94.2 % ± 6.3 %. p = 0.0005)(left: BSL, 96.7 % ± 3.1 % vs. SD, 92.1 % ± 6.1 %, p < 0.0001)]. These effects were evident within both gender subgroups [(right: males, p = 0.0080; females, p = 0.0143)(left: males, p = 0.0076; females: p = 0.0010).ConclusionSleep deprivation impairs RGDT and SSWT performance. These findings confirm that sleep deprivation has central effects that may impair performance in other areas of life.

Highlights

  • Sleep deprivation is extremely common in contemporary society, and is considered to be a frequent cause of behavioral disorders, mood, alertness, and cognitive performance

  • Subsequent analysis of the Random Gap Detection Test (RGDT) data by gender subgroup showed that this effect was not gender dependent, as this pattern of results was replicated within both the male and the female subgroups

  • The mean RGDT score for males increased from 4.7 ± 2.7 ms in the BSL condition to 6.6 ms ± 2.9 ms in the 24 hours of being sleep deprived (24hSD) condition (p = 0.0066)

Read more

Summary

Introduction

Sleep deprivation is extremely common in contemporary society, and is considered to be a frequent cause of behavioral disorders, mood, alertness, and cognitive performance. The impacts of sleep deprivation have been studied extensively in various experimental paradigms, very few studies have addressed the impact of sleep deprivation on central auditory processing (CAP). The impact of sleep deprivation has been studied extensively in various experimental paradigms from basic animal research, such as the effects of SD on hippocampal neurogenesis [10], to sophisticated human imaging studies [11], there have been very few studies that have addressed the impact of sleep deprivation on central auditory processing (CAP). CAP can be understood as a set of neurophysiological and neurochemical mechanisms that occur in the auditory system in response to acoustic stimuli. CAP is critical for language comprehension and is responsible for sound localization and lateralization, sound discrimination, auditory pattern recognition, and the temporal aspects of hearing (including auditory masking, resolution, integration, and ordering), as well as for the ability to negotiate competing or degraded acoustic signals [12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call