Abstract

Owing to the dynamic interaction between frog skin and the environment, xenobiotics in frog habitats are of particular concern, and knowledge of percutaneous absorption in frog skin is necessary for risk-mitigation purposes. Baseline transdermal kinetics in adult aquatic and arboreal frog species have recently been reported; however, there is little information regarding absorption kinetics in adult terrestrial species. The present study investigated the in vitro absorption kinetics of 3 model chemicals-caffeine, benzoic acid, and ibuprofen-through different skin regions in the terrestrial toad Rhinella marina. Caffeine flux was consistently higher than that of the other 2 chemicals (p < 0.001), whereas the fluxes of the moderately and highly lipophilic chemicals (benzoic acid and ibuprofen) were similar, regardless of skin region. When considering individual chemicals, caffeine demonstrated increased flux through the ventral pelvic skin compared with the ventral thoracic or dorsal skin regions. Flux did not differ between skin regions for either benzoic acid or ibuprofen. These findings have implications for management of environmental contamination in frog habitats, as many environmental xenobiotics are of moderate to high lipophilicity and would be expected to be equally absorbed from all skin surfaces in terrestrial toads. Environ Toxicol Chem 2019;38:361-367. © 2018 SETAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.