Abstract

A simulation study investigated the effects of skewness and kurtosis on level-specific maximum likelihood (ML) test statistics based on normal theory in multilevel structural equation models. The levels of skewness and kurtosis at each level were manipulated in multilevel data, and the effects of skewness and kurtosis on level-specific ML test statistics were examined. When the assumption of multivariate normality was violated, the level-specific ML test statistics were inflated, resulting in Type I error rates that were higher than the nominal level for the correctly specified model. Q-Q plots of the test statistics against a theoretical chi-square distribution showed that skewness led to a thicker upper tail and kurtosis led to a longer upper tail of the observed distribution of the level-specific ML test statistic for the correctly specified model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call