Abstract

Aerial locomotion in snakes (genus Chrysopelea) is kinematically distinct from any other type of gliding or powered flight, with prominent, high amplitude body undulations visually dominating the behavior. Because it is not known how flying snakes produce aerodynamic forces in flight, the factors that determine snake flight performance are not clear. In this study, the effects of size and behavior on aerial performance were examined both within a species (C. paradisi) and between two species (C. paradisi and C. ornata), using stepwise multiple regressions to identify relevant variables. Smaller C. paradisi traveled farther than larger snakes at lower sinking speeds, with trajectories that shallowed more quickly and reached lower minimum glide angles. Although wing loading increased faster than expected for isometric size increase, wing loading per se was not responsible for performance differences between large and small snakes. Snakes with higher interactions between relative undulation amplitude and body size transitioned out of the initial acceleration phase at higher airspeeds and sinking speeds, and attained higher maximum airspeeds and horizontal speeds; snakes that used higher average relative amplitudes transitioned out of the initial acceleration phase at higher horizontal speeds. Undulation frequency was not significantly related to any performance variable within C. paradisi and was not significantly different between the two species, suggesting that this variable (in contrast to relative undulation amplitude) may have a minor influence on the aerodynamic mechanism of force production in snake flight. C. paradisi and C. ornata differed significantly in most performance comparisons. C. ornata were more massive than C. paradisi at any given body length and in general exhibited poorer gliding performance than C. paradisi. This study contributes towards understanding how an unconventional body form and kinematics can produce a novel mode of aerial locomotion in a vertebrate glider.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.