Abstract

A solid oxide fuel cell is a high-efficiency power device in hydrogen energy utilization. The durability and dynamic performance of metal-supported solid oxide fuel cells (MS-SOFCs) are superior to those of electrolyte- or electrode-supported cells, with many potential applications. Gadolinium-doped cerium (GDC) has a high oxygen ionic conductivity, making it suitable to act as the electrolyte in MS-SOFCs operating at 500–650 °C. However, the low-temperature sintering of GDC is difficult for MS-SOFCs. In this study, the factors affecting the low-temperature densification of GDC are analyzed based on an orthogonal experimental method. The shrinking rates of 16 experiments are determined. The effects of the particle diameter, pressure of the uniaxial press machine, sintering temperature, and fractions of aid and binder are estimated. The results of a range analysis indicate that the content of sintering aid has the greatest impact on the low-temperature densification of GDC, followed by the powder diameter and the uniaxial pressure. A maximum shrinking rate of 46.99% is achieved with a temperature of 1050 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.