Abstract

Yttrium aluminum garnet (YAG) fibers were prepared by a sol-gel method, and then sintered in air or nitrogen atmosphere, respectively. The effects of sintering atmosphere on the densification process and microstructure of YAG fibers were investigated. No obvious difference can be found in the fibers sintered below 800 °C. At 1100 °C, the grain size of YAG fibers sintered in nitrogen is much smaller than in air. This difference is much clearer at the higher temperature of 1200 °C. The fine grains are explained by the existence of residual carbon in YAG fibers, which can be trapped at the grain boundaries to hinder the movement of grain boundary. Meanwhile, the densification degree of fibers sintered in nitrogen is higher than in air at 1200 °C, due to the smaller grain size and higher oxygen vacancy concentration generated in the nitrogen atmosphere, which leads to a higher fiber densification rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call