Abstract

SP2 carbon materials, including carbon nanotubes and graphene, have been used extensively for making highly sensitive biochemical field-effect transistor (FET) sensors. Previous studies suggest that structural disorders in these materials enhance the device sensitivity. Despite many studies on device sensitivity in relation to structural defects, only a few studies have examined the effect of defects on low-frequency noise in graphene FETs [1]. However, no study has yet investigated the correlation between the specific type defects, e.g. single vacancy defects, and the low-frequency noise characteristics of graphene transistors. Here, we systematically study the connection between the concentration of single vacancy defects, the low-frequency noise and carrier transport in graphene FETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call