Abstract

Background: In everyday life, people engage in situations involving the concurrent processing of motor (balance) and cognitive tasks (i.e., “dual task situations”) that result in performance declines in at least one of the given tasks. The concurrent practice of both the motor and cognitive task may counteract these performance decrements. The purpose of this study was to examine the effects of single task (ST) compared to dual task (DT) practice on learning a dynamic balance task.Methods: Forty-eight young adults were randomly assigned to either a ST (i.e., motor or cognitive task training only) or a DT (i.e., motor-cognitive training) practice condition. The motor task required participants to stand on a platform and keeping the platform as close to horizontal as possible. In the cognitive task, participants were asked to recite serial subtractions of three. For 2 days, participants of the ST groups practiced the motor or cognitive task only, while the participants of the DT group concurrently performed both. Root-mean-square error (RMSE) for the motor and total number of correct calculations for the cognitive task were computed.Results: During practice, all groups improved their respective balance and/or cognitive task performance. With regard to the assessment of learning on day 3, we found significantly smaller RMSE values for the ST motor (d = 1.31) and the DT motor-cognitive (d = 0.76) practice group compared to the ST cognitive practice group but not between the ST motor and the DT motor-cognitive practice group under DT test condition. Further, we detected significantly larger total numbers of correct calculations under DT test condition for the ST cognitive (d = 2.19) and the DT motor-cognitive (d = 1.55) practice group compared to the ST motor practice group but not between the ST cognitive and the DT motor-cognitive practice group.Conclusion: We conclude that ST practice resulted in an effective modulation of the trained domain (i.e., motor or cognitive) while only DT practice resulted in an effective modulation of both domains (i.e., motor and cognitive). Thus, particularly DT practice frees up central resources that were used for an effective modulation of motor and cognitive processing mechanisms.

Highlights

  • In everyday life, situations involving the processing of motor and cognitive tasks simultaneously [i.e., dual task (DT) situations] represent the norm rather than an exception

  • The main effect of group indicates a higher level for the total number of correct calculations for the single task (ST) cognitive compared to the DT motor-cognitive practice group

  • Post hoc comparisons indicated significantly smaller root-mean-square error (RMSE) values under the DT test condition for the ST motor (p = 0.002, d = 1.31) and the DT motor-cognitive (p = 0.040, d = 0.76) practice group compared to the ST cognitive practice group

Read more

Summary

Introduction

Situations involving the processing of motor (balance) and cognitive tasks simultaneously [i.e., dual task (DT) situations] represent the norm rather than an exception. Previous studies in healthy young adults investigating DT situations that involved a balance task (e.g., standing or walking) and a cognitive interference task (e.g., serial subtraction of numbers, memorizing words) primarily reported decrements in balance (i.e., increased postural sway, reduced gait speed) and/or in cognitive (i.e., reduced number of correct calculations, increased error rates) task performance. Chong et al (2010) proved that the concurrent execution of a serial subtraction task while standing had a significant detrimental impact on balance (i.e., increase in body sway) and on computation (i.e., decrease in speed and accuracy) performance in healthy young adults (mean age: 25 years; SD: 3 years). People engage in situations involving the concurrent processing of motor (balance) and cognitive tasks (i.e., “dual task situations”) that result in performance declines in at least one of the given tasks. The purpose of this study was to examine the effects of single task (ST) compared to dual task (DT) practice on learning a dynamic balance task

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call