Abstract

The novel modified polyurethane (PU) membranes were prepared by β-cyclodextrin (CD) cross-linking and SiO2/carbon fiber filler, simultaneously. The structures, thermal stabilities, morphologies, and surface properties were characterized by FTIR, TGA, SEM, and contact angle. The results showed that the addition of inorganic particles increased the thermal stabilities of PU membranes. The modified PU membranes possessed more hydrophobic surfaces than pure PU. In the swelling investigation, PU and its modified membranes were swelled gradually with increasing phenol content in the mixture. The membranes modified by CD cross-linking (PUCD) demonstrated the highest swelling degree. Pervaporation (PV) performances were investigated in the separation of phenol from water. Three kinds of modified membranes obtained better permeability and selectivity than PU membranes. With the feed mixture of 0.5 wt% phenol at 60 °C, the modified PU membrane by CD cross-linking and SiO2 filler (PUCD-S) obtained the total flux of 5.92 kg μm m−2 h−1 which was above doubled that of PU (2.90 kg μm m−2 h−1). The modified PU membrane by CD cross-linking and carbon fiber filling (PUCD-C) obtained the separation factor of 51.31 which was nearly tripled that of PU (17.72). The PUCD membranes showed both better permeability and selectivity than the pure PU membranes. The increased phenol content induced an increased separation factor of PUCD and PU, but a decreased selectivity of PUCD-S and PUCD-C. The methods of CD cross-linking and inorganic particle filling were effective to develop the overall separation performances, greatly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call