Abstract
Ongoing climate change, characterized by winter warming, snow cover decline and extreme weather events, is changing terrestrial ecosystem processes in high altitude and latitude regions. Winter soil processes could be particularly sensitive to climate change. In fact, winter warming and snow cover decline are interdependent in cold biomes, and have a synergistic effect on soil processes. Soil microorganisms not only play crucial roles in material cycling and energy flow, but also act as sensitive bio-indicators of climate change. However, little information is available on the effect of winter warming on forest soil ammonia-oxidizing bacteria (AOB) and archaea (AOA). The alpine and subalpine forest ecosystems on the eastern Tibet Plateau have important roles in conserving soil, holding water, and maintaining biodiversity. To understand the changes in AOB and AOA communities under climate change scenarios, an altitudinal gradient experiment in combination with soil column transplanting was conducted at the Long-term Research Station of Alpine Forest Ecosystems, which is situated in the Bipeng Valley of Lixian County, Sichuan, China. Thirty intact soil columns under an alpine forest at an altitude of 3582m were transplanted and incubated at 3298m and 3023m forest sites, respectively. Compared with the 3582m, we expected air temperature increases of 2°C and 4°C at the 3298m and 3023m, respectively. However, the temperatures in the soil organic layer (OL) and mineral soil layer (ML) increased by 0.27°C and 0.13°C, respectively, at 3023m and −0.36°C and −0.35°C at 3298m. Based on a previous study and with simultaneous monitoring of soil temperature, the abundances of AOB and AOA communities in both the OL and ML were measured by qPCR in December 2010 (i.e., the onset of the frozen soil period) and March 2011 (i.e., the late frozen soil period). The soil columns incubated at 3023m had relatively higher AOB abundances and lower AOA/AOB ratios than those at 3298m, while higher AOA abundances and AOA/AOB ratios were observed at 3298m. The abundance of the microbial community at the late frozen period was higher than that at the onset of frozen soil, and the changes in microbial community abundance at the late frozen period were more substantial. Furthermore, the nitrate nitrogen (N) concentrations in both the OL and ML were significantly higher than ammonia N concentrations, implying that soil nitrate N is the primary component of the inorganic N pool in the alpine forest ecosystem. Additionally, the responses of AOA and AOB in the soil OL to soil column transplanting were more sensitive than the responses of those in ML. In conclusion, climate warming alters the abundance of the ammonia-oxidizing microbial community in the alpine forest ecosystem, which, in turn, might affect N cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.