Abstract

Spaceflight and its bed rest analog impair thermoregulatory responses, including elevated core temperature observed at rest and during exercise. Natural air flow has been found to increase cold sensation significantly compared to artificial constant air flow (CAF). The present study tested the hypothesis that simulated natural air flow (SNAF) ventilation would ameliorate impaired thermoregulatory function to a greater extent than CAF under simulated microgravity conditions. Seven healthy males underwent 30 days of −6° head-down bed rest (HDBR). During pre-HDBR and the day 29 of HDBR (HDBR 29), the subjects were exposed to three air flow patterns at 23°C while in a supine posture: a still air flow control (CON), CAF, and SNAF. The mean air velocity of the latter two patterns was 0.2m/s. Subjective perception of the thermal environment was recorded by thermal sensation vote (TSV), and rectal temperature (Tre), skin temperature (Tsk), and cutaneous vascular conductance (CVC) were also measured during the sessions. Tre was significantly elevated after 29 days of HDBR and decreased to a greater extent in SNAF than in CAF on HDBR 29. However, there was no significant difference between Tre in SNAF on HDBR 29 and that in CON on pre-HDBR. Mean Tsk, CVC, and TSV in SNAF were also significantly lower than those in CAF on HDBR 29. Moreover, TSV was close to ‘neutral’ under SNAF on HDBR 29. These data indicate that simulated natural air movement might be more effective than constant air movement at preserving core temperature at a thermoneutral ambient temperature during HDBR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call