Abstract

BackgroundTo improve the understanding of consequences of climate change for annual plant communities, I used a detailed, grid-based model that simulates the effect of daily rainfall variability on individual plants in five climatic regions on a gradient from 100 to 800 mm mean annual precipitation (MAP). The model explicitly considers moisture storage in the soil. I manipulated daily rainfall variability by changing the daily mean rain (DMR, rain volume on rainy days averaged across years for each day of the year) by ± 20%. At the same time I adjusted intervals appropriately between rainy days for keeping the mean annual volume constant. In factorial combination with changing DMR I also changed MAP by ± 20%.ResultsIncreasing MAP generally increased water availability, establishment, and peak shoot biomass. Increasing DMR increased the time that water was continuously available to plants in the upper 15 to 30 cm of the soil (longest wet period, LWP). The effect of DMR diminished with increasing humidity of the climate. An interaction between water availability and density-dependent germination increased the establishment of seedlings in the arid region, but in the more humid regions the establishment of seedlings decreased with increasing DMR. As plants matured, competition among individuals and their productivity increased, but the size of these effects decreased with the humidity of the regions. Therefore, peak shoot biomass generally increased with increasing DMR but the effect size diminished from the semiarid to the mesic Mediterranean region. Increasing DMR reduced via LWP the annual variability of biomass in the semiarid and dry Mediterranean regions.ConclusionMore rainstorms (greater DMR) increased the recharge of soil water reservoirs in more arid sites with consequences for germination, establishment, productivity, and population persistence. The order of magnitudes of DMR and MAP overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation.

Highlights

  • To improve the understanding of consequences of climate change for annual plant communities, I used a detailed, grid-based model that simulates the effect of daily rainfall variability on individual plants in five climatic regions on a gradient from 100 to 800 mm mean annual precipitation (MAP)

  • The order of magnitudes of daily mean rain volume (DMR) and MAP overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation

  • I assessed the importance of intra-annual rainfall distribution on soil moisture, seedling density, peak shoot mass, and population persistence by varying independently the amplitude of daily mean rain volume (DMR) and the mean annual precipitation (MAP) and comparing their relative effects

Read more

Summary

Introduction

To improve the understanding of consequences of climate change for annual plant communities, I used a detailed, grid-based model that simulates the effect of daily rainfall variability on individual plants in five climatic regions on a gradient from 100 to 800 mm mean annual precipitation (MAP). In this paper I use a simulation approach to systematically examine the effect of daily rainfall variability on the growth of annuals in the Middle East along a climatic gradient from arid to mesic Mediterranean. For the years 2071–2100, global climate models project a regionally varying shift of both mean annual precipitation and distribution of daily rainfall intensity. For subtropical/warm-temperate regions (25–40° latitude), which include the Middle East, mean annual precipitation is projected to increase by up to 100 mm this century [8]. Compared to the change in water supply, the increase in temperature seems less important for plant growth in the arid and semi-arid climates within this range of latitude [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call