Abstract

Silymarin, a standardized mixture of flavonolignans, or its major constituents could be effective for prevention and treatment of hepatic damage or skin cancer. However, their potential side effects, such as modulation of endocrine functions via the disruption of estrogen receptor (ER) and/or aryl hydrocarbon receptor (AhR) activation, are largely unknown. In the present study, we investigated impact of silymarin, its constituents and a series of their synthetic derivatives on ER- and AhR-mediated activities using in vitro reporter gene assays. We found that none of the compounds under study affected the AhR-mediated activity in rat hepatoma cells. Contrary to that, several compounds behaved as either partial or full ER agonists. Silymarin elicited partial ER activation, with silybin B being probably responsible for a majority of the weak ER-mediated activity of silymarin; silybin A and other flavonolignans were found to be inactive and potent ER agonist taxifolin is only a minor constituent of silymarin. To our knowledge, this is probably the first time, when receptor-specific in vitro effects of separated diastereomers have been demonstrated. In contrast to silymarin constituents, the synthetic silybin derivatives, potentially useful as chemoprotective agents, did not modulate the ER-mediated activity, with exception of 23- O-pivaloylsilybin. Interestingly, 7- O-benzylsilybin potentiated ER-mediated activity of 17β-estradiol despite possessing no estrogenic activity. In conclusion, our data suggest that estrogenicity of some silymarin constituents should be taken in account as their potential side effect when considered as chemopreventive compounds. These results also stress the need to study biological activities of purified or synthesized diastereomers of silybin derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.