Abstract

Green synthesis of silver nanoparticles (AgNPs) from aqueous silver nitrate has been achieved using an extract of Ferula communis leaf as a capping, reducing, and stabilizing agent. The formation and stability of the green synthesized silver nanoparticles in the colloidal solution were monitored by absorption measurements. Silver nanoparticles were characterized by different analyses such as X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and FT-IR spectroscopy. The average particle size of silver nanoparticles was determined by high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) analyses. In this experiment, pregnant female mice were divided into four groups (G); G1 was the control and received phosphate-buffered saline, G2 received orally aqueous extract of F. communis leaf, G3 received orally AgNPs chemically prepared by NaBH4, and G4 received orally AgNPs prepared by aqueous extract of F. communis leaf. The diameter of AgNPs was 20nm. AgNPs exhibited good catalytic reduction ability toward methyl orange in the presence of sodium borohydride with a rate constant of 2.95 x 10-4 s-1. The results revealed the occurrence of resorbed embryos in G2, G3, and G4 with different percentages. The livers of mothers and embryos at E14.5 in G2, G3, and G4 showed different levels of histopathological alteration and increase in GFAP and CTGF expressions compared with the control group. The study concluded that the oral administration of small-sized AgNPs (20nm) prepared by Ferula extract had less toxicity than those prepared by the chemical method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call